Molecular Characterization of the Brittle-2 Gene Effect on Maize Endosperm ADPglucose Pyrophosphorylase Subunits.
نویسندگان
چکیده
Activity of the enzyme ADPglucose pyrophosphorylase is known to be reduced in maize (Zea mays L.) endosperm mutants at two independent loci, Shrunken-2 (Sh(2)) and Brittle-2 (Bt(2)). Spinach leaf ADPglucose pyrophosphorylase has previously been shown to comprise two subunits of 51 and 54 kilodaltons. Anti-bodies raised to each of the two subunits of spinach leaf ADPglucose pyrophosphorylase were found to cross-react to different bands on Western blots prepared from polyacrylamide gel electrophoresis separated wild-type maize endosperm proteins. The anti-spinach leaf 51 kilodalton subunit antibody cross-reacted with a 55 kilodalton maize endosperm protein and the anti-spinach leaf 54 kilodalton subunit antibody cross-reacted with a 60 kilodalton maize endosperm protein. These immunological reactions were observed in maize endosperm extracts and with a highly purified preparation of maize endosperm ADPglucose pyrophosphorylase. Mutant bt(2) endosperm lacked the 55 kilodalton subunit while mutant sh(2) endosperm lacked the 60 kilodalton subunit on Western blots. These results suggest that the maize endosperm ADPglucose pyrophosphorylase is made up of two immunologically dissimilar subunits and that the bt(2) and sh(2) mutations cause reduction in ADPglucose pyrophosphorylase activity through the lack of one of these two subunits. An ADPglucose pyrophosphorylase cDNA clone antigenically selected from a rice seed cDNA expression library was found to hybridize strongly with a cDNA corresponding to a maize endosperm transcript which is absent in a W64A bt(2) mutant. Thus, the bt(2) mutant causes the absence not only of the small subunit but of the corresponding transcript. Bt(2) is implicated as the structural gene for the small (54 kilodalton) subunit of maize endosperm ADPglucose pyrophosphorylase.
منابع مشابه
The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase.
ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure (JR Sowokinos, J Preiss [1982] Plant Physiol 69: 1459-1466) together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In sin...
متن کاملIdentification and molecular characterization of shrunken-2 cDNA clones of maize.
Mutation at the shrunken-2 (Sh2) locus of maize, a gene described more than 40 years ago, greatly reduces starch levels in the endosperm through its effect on the starch synthetic enzyme ADP-glucose pyrophosphorylase, an enzyme thought to be regulatory in this biosynthetic pathway. Although our previous work has suggested that Sh2 is a structural gene for this enzyme, we have also reported data...
متن کاملSubcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform.
The intracellular location of ADPglucose pyrophosphorylase (AGPase) in wheat during endosperm development was investigated by analysis of the recovery of marker enzymes from amyloplast preparations. Amyloplast preparations contained 20-28% of the total endosperm activity of two plastidial marker enzymes and less than 0.8% of the total endosperm activity of two cytosolic marker enzymes. Amylo pl...
متن کاملGene Expression in Developing Wheat Endosperm : Accumulation of Gliadin and ADPglucose Pyrophosphorylase Messenger RNAs and Polypeptides.
The developmental accumulation pattern of messenger RNA transcripts and polypeptides for wheat gliadins and ADPglucose pyrophosphorylase was determined using cDNA and antibody probes. Gliadin mRNA was detected on Northern and RNA dot blots at 3 days after flowering, it increased 100-fold by 10 days and decreased subsequent to 14 days. The abundant mRNAs encoding alpha/beta- and gamma-type gliad...
متن کاملEndosperm Mutants of Maize
Sugar metabolism in kernels of starch-deficient endosperm mutants of maize (Zea mays L.) was examined to determine how single locus mutations of carbohydrate metabolism affect carbohydrate metabolism as a whole. Activities of 14 enyzmes were measured in extracts from endosperms from isogenic lines of normal, shrunken, shrunken-2, shrunken-4, brittle-1, and brittle-2 maize in an OH43 background....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 92 4 شماره
صفحات -
تاریخ انتشار 1990